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Background

* Coupled systems are commonly used
— Large scale system: computation, simulation, etc

— Special-purpose system: data analysis,
visualization, etc

* Coupled applications:
— Simulation / computing applications
— Visualization/data analysis applications
— Example: FLASH & vI3, PHASTA & ParaView
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Coupled systems examples

Intrepid & Eureka @ANL
— Intrepid: IBM Blue Gene/P with 163, 840 cores (#13 in Top500)
— Eureka: 100-node cluster with 200 GPUs (largest GPU installation)
 Ranger & Longhorn @TACC
— Ranger: SunBlade with 62,976 cores (#15 in Top500)
— Longhorn: 256-node Dell Cluster, 128 GPUS
* Jaguar & Lens @ORNL
— Jaguar: Cray XT5 with 224, 162 cores (#3 in Top500)
— Lens: 32-node Linux cluster, 2 GPUs
* Kraken & Verne @ NICS/UTK
— Kraken: Cray XT5 with 98,928 cores (#8 in Top500)
— Verne: 5-node Dell cluster.

e Andsoon......



Motivation

 Post-hoc execution

— Computing applications write data to storage system,
and then analysis applications read data from storage
system and process

— 1/0 time consuming

* Co-execution is increasingly demanded:

— Saving |/O time by transfer data from simulation
application to visualization/data analysis (an ongoing
project named GLEAN)

— Co-execution enables monitoring simulations,
debugging at runtime

— Heterogeneous computing



Problem statement

* System A and B running parallel jobs
— Job schedulers / scheduling policies are independent
— Job queues are independent

 Some of jobs on A has associated (mate) jobs on B.
— Mate jobs are in pairs: one on A, the other on B

* Co-scheduling Goal:

— Guarantee the mate jobs in the same pair start at same
time on their respective hosting system without manual
reservation

— Limit the negative impact of system performance and
utilization.



Related work

 Meta scheduling
— Managing jobs on multiple clusters via a single instance
— Moab by Adaptive Computing Inc, LoadLeveler by IBM

— Our work is more distributed. Different scheduler running
on independent resource management domain can
coordinate job scheduling.

e Co-Reservation

— Co-allocation of compute and network resources by
reservation

— HARC (Highly-Available Resource Co-allocator) by LSU

— Our work doesn’t involve manual reservation; co-
scheduling is automatically coordinated.



Basic schemes

* When a job can start to run on a machine
while its mate job on the remote machine
cannot, it may “hold” or “yield”.

 Hold

— Hold resources (nodes) which cannot be used by
others until the mate job can run

* Yield

— Give up the turn of running without holding any
resources



Algo

rithm

Algorithm 1: RunJob(j, N)
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Input: A scheduled job 7 with assigned nodes N
Result: Job j either starts. or holds, or yields. Its
remote mate job k. if exasting. could be
triggered to start under certain condition.
if cosched_enabled then

k = remote getMateJobId( ;)

if & then
mate_status = remote gethlateStatus( k)
switch mate_status do
case "unsubmitted”
case "gquening’”
mate_started = remote tryStartMate( k)
if mate_started then
self startTob(7. N)
end
else

if sel f.scheme == "hold"” then
| selfholdJob(j, N)

end
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end
else

end
else

if sel f.scheme == "yield"” then
| self vieldJob( )
end
end
ndsw
ase "holding”
self startJTob(j. N)
remote startTob(k)
endsw
case "unknown”
self startTob(j. N)

endsw
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endsw

| self startTob{j. N)

end

| self startJob(j. V')

end
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Strategies combination

 Hold-Hold

— Good for the sync-up of mated jobs
— Bad for system utilization
— May cause deadlock
* Yield-Yield
— No hurt for system utilization
— Bad for mated jobs waiting

* Hold-Yield (or Yield-Hold)
— Behave respectively



Deadlock
* Coupled systems A & B, both use “hold”
scheme

* Circular wait (a12b1>b2—>a2—>al)
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Enhancements

* Solving Deadlock

— Release all the held nodes periodically (e.g. every
20 minutes)

* Reduce overhead
— Threshold for yielding times

 Fault-Tolerance consideration

— A job won’t wait forever when the remote
machine is down



Evaluation

* Event-driven simulation using real job trace
from production supercomputers.

* Qsim along with Cobalt resource manager.



Experiment goals

* |nvestigate the impact by tuning system load

* |nvestigate the impact by tuning the
proportion of paired jobs.




Job traces

* Intrepid (real trace)
— One month, 9220 jobs, sys. Util. 70%

* Eureka (half-synthetic, packed into one month)
— Trace 1: 5079 jobs, sys. Util. = 25%
— Trace 2: 11000 jobs, sys. Util. = 50%
— Trace 3: 14430 jobs, sys. Util. =75%
— Synthetic: 9220 jobs. Sys. Util. =48%



Evaluation Metrics

* Avg. waiting time
— Start time — Submission time
— Average among total jobs
Avg. slowdown
— (wait time + runtime) /runtime
— Average among total jobs
Mated job sync-up overhead
— How many more minutes need to wait in co-scheduling
— Average among all paired jobs
Loss of computing capability

— Node-hour
— System utilization rate



Average wait by sys. Util.

(a) Intrepid avyg, wait
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Slowdown by sys. Util.

(a) Intrepid avg, slowdown
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Coscheduling overhead by sys. Util.

Intrepid job sync-up overhead (average)
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node-hour

Loss of computing capability by sys. Util.

Intrepid loss of computing capability
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Avg. wait by proportion of paired jobs
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Slowdown by proportion of paired jobs

{a) Intrepid avyg, slowdown
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minutes

Overhead by proportion of paired jobs
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node-hour

Loss of computing capability by proportion

of paired jobs

Intrepid loss of computing capability
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Summary

* Designed and implemented coscheduling
algorithm to start associated at the same time in
order to fulfill multiple needs of certain
applications, such as reducing I/O overhead in
coupled HEC environment.

e Evaluated the coscheduling impact on system
performance and overhead for jobs needing co-
scheduling.

* Conclusion: coscheduling can work with some
acceptable overhead under different system
utilization rate and proportion of mated jobs.



Thank you!



